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Abstract. A combination of analytical and statistical methods is used to improve a tablet coating process
guided by quality by design (QbD) principles. A solid dosage form product was found to intermittently
exhibit bad taste. A suspected cause was the variability in coating thickness which could lead to the
subject tasting the active ingredient in some tablets. A number of samples were analyzed using a laser-
induced breakdown spectroscopy (LIBS)-based analytical method, and it was found that the main
variability component was the tablet-to-tablet variability within a lot. Hence, it was inferred that the
coating process (performed in a perforated rotating pan) required optimization. A set of designed
experiments along with response surface modeling and kriging method were used to arrive at an optimal
set of operating conditions. Effects of the amount of coating imparted, spray rate, pan rotation speed, and
spray temperature were characterized. The results were quantified in terms of the relative standard
deviation of tablet-averaged LIBS score and a coating variability index which was the ratio of the
standard deviation of the tablet-averaged LIBS score and the weight gain of the tablets. The data-driven
models developed based on the designed experiments predicted that the minimum value of this index
would be obtained for a 6% weight gain for a pan operating at the highest speed at the maximum fill level
while using the lowest spraying rate and temperature from the chosen parametric space. This systematic
application of the QbD-based method resulted in an enhanced process understanding and reducing the
coating variability by more than half.
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INTRODUCTION

A majority of pharmaceutical products are marketed in
solid dosage form, and coated tablets constitute a major
fraction among these. Coating is imparted due to a variety of
reasons such as masking unpleasant taste, improving physical
and chemical stability, controlling dissolution rate, enhancing
appearance, imprinting information, or adding an active
compound. It is therefore critical that there is minimal
intra- and inter-tablet coating thickness variability. Typically,
coating is the last step in the manufacturing process before the
product is packaged. Any defects detected at this stage
prove very costly for the manufacturer. In order to ensure
high product quality, it is important to understand the
causes of variability as well as characterize the effect of
various process parameters. One of the most commonly
used techniques for coating tablets involves a perforated

rotating pan wherein the tablets are sprayed from the top
using one or more nozzles. Tablets receive different
amounts of coating suspension depending on their position
within the pan and their (random) pattern of motion
during the coating process. The pan baffle configuration,
rotation speed, fill level, coating type, spray pattern and
rate, as well as the tablet shape and surface properties can
all have an effect on coating thickness variability.

A number of studies that attempt to elucidate the effect
of processing parameters on coating variability have been
reported in the literature. Near-infrared spectroscopic and
imaging techniques (1), video imaging (2), and modeling
techniques like mathematics-based (3), discrete element
method (DEM)-based mechanistic (4,5), and Monte Carlo
(6) models have been utilized. Efficient mixing in coating
pans has been identified as a critical parameter (5,7). Tobiska
and Kleinebudde (8) used the difference in the temperatures
of two sensors to characterize mixing in a coating pan and the
effect of spray rate, pan tilt, and pan speed. Of the parameters
of interest to this study, the effect of increasing speed has
generally been enhanced mixing and, hence, reduced coating
variability. Lower spray rate has been shown to produce
better uniformity (3,4).

The quality by design (QbD) paradigm involves enhanced
understanding of both the product and the manufacturing
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process in order to build quality into the product. Thus, studies
were conducted in order to quantify the magnitude of coating
thickness variability within a tablet, within a batch, and between
different batches. An experimental method based on laser-
induced breakdown spectroscopy (LIBS) was developed for
measuring coating thickness, and statistical analysis was per-
formed to determine the relative magnitude of coating thickness
variability. These experiments determined that inter-tablet
variability was the most significant component of coating
thickness variability. Typically, the root cause of this type of
variability is slow axial mixing in the coating pan. To examine
this effect, a set of designed experiments were used to examine
the effects of pan speed, weight gain, and coating temperature
on coating thickness variability. DEM simulations of the coating
process were performed to examine the effect of fill level, pan
speed, spray pattern, and spray time on coating thickness
variability, though the details of this particular study will
not be presented in this paper in the interest of space.
Furthermore, process optimization was performed with the
help of response surface and the kriging method. The
results from these experiments and simulations showed
that mixing was indeed a contributing factor and identified
fill level, spray rate, average weight gain, and pan speed
as important parameters. These results were used to identify
optimum conditions for the coating process. Validation batches
using different levels of active pharmaceutical ingredient
(API) content showed that the variability was not only
significantly reduced but that the new process was also
robust for different dosage levels.

ANALYTICAL AND COMPUTATIONAL METHODS

Laser-Induced Breakdown Spectroscopy

The LIBS technique is based on the atomic emission
spectroscopy of laser-produced plasma (9). A laser pulse is
focused on the surface of a sample to ablate a small amount
of material. A few milligrams of the material are vaporized
into a plume, leading to the ionization of its constituent
atoms. Such atomic states decay by emission of radiation
which is observed in the ultraviolet, visible, and near-infrared
ranges. A spectrum composed of atomic lines and molecular
bands is obtained by resolving the emitted light using an
optical spectrometer. The constituent elements of a tablet
(from coating or core) can thus be identified by analyzing the
spectrum at wavelengths at which they emit light when
decaying from high energy levels. Using this method, a
relationship between the emission intensity and the concen-
tration of the species of interest can be constructed using a
simple univariate calibration curve, providing for a simple
and efficient way to quantify a formulation composition. In
this study, PharmaLIBS™250, an instrument manufactured
by Pharmalaser, Inc. (10) (Fig. 1), was used for the LIBS
analysis. It is divided into two compartments: the ablation
chamber on the top is used to house the sample tray and laser
guide. The bottom part contains a computer and a spectrometer,
among other components. Neodymium-doped yttrium alumi-
num garnet (Nd:Y3Al5O12) or Nd:YAG laser at 1,064-nm
wavelength is passed through a beam sampler and a lens before

Fig. 1. a PharmaLIBS™250 instrument. b The main door open showing the top
compartment which contains a carousel and a laser guide above it. c Closer view of the
carousel which has 26 slots in it. d Close-up of a slot in the carousel showing a tablet
mounted using a holder which is machined to fit the tablet snugly
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it is redirected using a mirror onto the sample which is fixed in a
placeholder on the carrousel. The light signal from the plasma
produced as a result of sample ablation is transmitted through a
fiber-optic bundle to the spectrometer and the CCD detector.
The spectral data are transmitted to a computer which also
controls the powder of the laser and monitors it using the signal
from a Joule meter.

The main advantages of LIBS compared with other
analytical techniques are its speed and the absence of a
sample preparation step (e.g., digestion). The signal intensity
value proportional to the amount of the element of interest
can be compared for each site on a tablet (intra-tablet
variability study) or as an average between several tablets
for content uniformity evaluation. It can also be used, as in
the present case, to assess the variability in thickness of the
coating layer on the tablet. Successful application of LIBS for
the analysis of pharmaceutical materials has been reported
(11–16).

Data-Driven Statistical Models

Lack of first principles knowledge describing the behav-
ior of granular systems has attracted significant attention to
data-driven models for characterizing process performance.
Hence, applications of such models are often treated as black
box operations. The added advantage of methods such as the
response surface method (RSM) is that their computational
requirements are far less than mechanistic modeling methods.
This also makes them good candidates for additional pur-
poses such as real-time optimization and control. This study
employs the RSM and kriging—two conceptually different
data-based methods. The two methods provide outputs in
different forms. The RSM produces non-interpolating surfa-
ces (i.e., sum of squares error from a predefined function is
minimized), while kriging produces interpolating surfaces
(passing through all the experimental points). Both methods
have attracted a significant amount of attention lately owing
to their simplicity and computational efficiency (17–22). In
this work, both methods are used to develop predictive
models for the effects of spray rate, pan speed, exhaust
temperature, and weight gain to the modified relative
standard deviation (RSD). Kriging is an interpolating
response surface method which is formed as a linear
combination of basis functions. In the literature, through a
comparison between RSM and kriging, it has been shown that
in certain cases, fitted quadratic surfaces may not sufficiently
capture the shape of the function (23). In addition, kriging
has a statistical interpretation that allows the estimation of
the potential prediction error. Kriging interpolation requires
the tuning of very few parameter values which do not
increase significantly when the number of input variables is

large. The two methodologies are based on completely
different principles, and by looking at their comparison, it
becomes clear that kriging is more appropriate for cases
where the response surface is expected to be non-convex and
nonlinear, while RSM is more appropriate in cases where the
output is expected to be a smooth and quadratic function.
Finally, kriging may be more suitable in cases where the
experimental data are not based on a carefully designed set of
experiments since the prediction error is a quantitative
measure for the identification of unexplored regions of the
multivariable space. In this study, both these models have
been used for the optimization and identification of the
combination of operating conditions that minimize the
coating thickness variability.

The Response Surface Method

RSM, a method first introduced by Box and Wilson in
1951 (24), is a tool that has been widely employed for the
optimization of noisy processes. It is a local optimization
technique whereby an optimum is achieved after sequential
optimization of localized sampling-based models (25). There
are three basic steps in the algorithm: (1) specification of a
sampling set within the local region, usually accomplished by
the design of experiment (DOE) tools; (2) construction of a
local model centered at a nominal sampling point; and (3)
model optimization with respect to the local region in order
to determine the location at which process improvement is
maximized. The spatial location of sampling points is an
important aspect of RSM modeling since the sampling set
should be representative of the entire experimental region
and DOE tools are applied in order to address this issue. The
experimental design is defined as the specification of a
number of treatment levels for each input variable, the
experimental units by which responses are measured, and
the mechanism by which treatments are assigned to units.

For a problem containing n continuous input variables,
an n-dimensional quadratic polynomial is used as the local
model since quadratic behavior describes the mathematical
geometry in the neighborhood of an optimum. Model
accuracy can be improved if bilinear terms capturing the
interaction effects between two inputs are also incorporated
into the local model. A general second-order response surface
model has the following form:

z ¼ b0 þ
X
j

bjxj þ
X
i< j

bijxixj þ
X
j

bjjx
2
j ð1Þ

The indices i and j differentiate the input variables xi and
xj, β0, βj, βij, and βjj are model coefficients, and z represents
the response that describes the predicted output behavior.

Fig. 2. a Variogram model. b Semivariance. c Covariance plot
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The Kriging Method

Kriging was first developed as an inverse distance
weighting method to describe the spatial distribution of
mineral deposits (26,27). This method has attracted a lot of
attention recently due to its ability to model complex
functions and to provide error estimates (21). In this method,
the prediction fk is expressed as a weighted sum of the
observed function values at sampling points that fall within a
set interval around the point that is predicted. The basic idea
of kriging is that a function value for a sampling point located
close to the test point is generally weighted more heavily in
contrast to the function value corresponding to a sampling
point located farther away. A lower weight is placed on
function values whose sampling points are clustered together
in order to minimize the possibility of generating biased
estimates. Since a variance for each test point is also
calculated, regions where subsequent sampling is required
can be linked to a high variance at the regional points.

In the kriging method, the first step is the determination
of variogram coefficients from an experimental sample set
consisting of N sampling points. A variogram is a quantitative
descriptive statistic that graphically characterizes data set
roughness. The information obtained from it complements
that which is obtained using histograms and other common
descriptive statistics. In order to determine the variogram
coefficients, (N)(N−1)/2 squared function differences are
obtained for each sampling pair. The squared function
differences are then plotted with respect to the L2-norm
sampling pair distance, as illustrated in Fig. 2a.

The best variogram model that should be used might not
immediately be apparent. Data smoothing is used to improve
the fit by replacing clustered scatterpoints falling within an
interval [hi−tol,hi+tol], tol being a certain tolerance, with
average values defined as semivariances. The semivariance
(γ(h)) is determined according to the equation:

gðhÞ ¼ 1
2NðhÞ

X
NðhÞ

½ f ðxiÞ � f ðxjÞ�2 ð2Þ

where N(h) is the number of sampling pairs whose Euclidean
distance falls within the range [hi−tol, hi+ tol]. Variogram
model coefficients are then obtained from a regression of the
semivariance scatterpoints to one of the five elementary
types: spherical, Gaussian, exponential, power, or linear. The
one whose least square error is the lowest is considered to be
the type that best captures the trend of the semivariance. The
covariance function which is a complementary function of the
semivariance is used to calculate the Kriging weights (wi) by
solving the system:
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where dij is the distance between sampling point xi and
sampling point xj, and dik is the distance between sampling
point xi and test point xk; λ is the Lagrangian multiplier of the
optimization problem associated with the unbiased constraint.
Similarly, Cov(dij) and Cov(dik) represent the modeled
covariances between the sampled function data whose
corresponding input vectors are a distance xi–xj or xi–xk
apart, respectively. The kriging prediction fk is then evaluated
by the following form:

fk ¼
XM

i¼1

wifi ð4Þ

where wi and fi represent the weight and observed values at
sampling point i, respectively. For each test point xk, a
variance �2

k is also obtained as follows:

�2k ¼ �2max �
X

M
i¼1wiCovðdikÞ � l ð5Þ

where Cov(dik) corresponds to the right-hand side of Eq. 3.

Fig. 3. Schematic description of site distribution on LIBS-analyzed
tablets

Table I. Conditions for Lots Used in the First Set of Designed Experiments Using Sample Set A

Lot no. Coating type Target coating weight (%) Coating pan diameter (in.) Load (kg) RSD

8 Opadry II 2.50 60 270 9.51
9 Opadry II 4.50 60 265 10.90
10 Opadry II 4.50 19 15 11.53
11 Opadry II 4.50 19 15 10.07
12 Opadry II 7.50 19 15 7.63
13 Opadry II+HPMC clear coat 4.5+1%=5.5% 19 15 9.93
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MATERIALS AND METHODS

Tablets that were either fully coated or sampled at
different stages of coating were used for analytical studies.
The first sample, sample set A, contained 240 tablets from six
production lots at 40 tablets per lot. The second sample, set
B, contained 2,400 tablets from ten placebo lots with 240
tablets per lot sampled intermittently in sets of 40 at six
different time points during a coating run. The third sample,
set C, contained 120 tablets sampled after completed coating
runs from three batches (40 tablets per batch), each with an
increasing amount of API in them. A detailed study involving
these three sets is presented in this paper. Another sample
set, referred to as set M1, was used to develop the analytical
method. Complete ANOVA and variance calculations for the
method development study are not presented here, but can
be found in Dubey et al. (28). Set M1 consisted of 100 tablets
sampled from five production batches with 20 tablets per
batch. This set was sampled from the same manufacturing
plant, but using the old (pre-optimization) process. Hence, it
can serve as an initial point for comparison of the overall
variance in this study.

Development of LIBS-Based Analytical Method

This section describes the method development process
for obtaining data from the LIBS instrument (intensity levels)
and expressing it into quantitative measures of tablet coating
thickness. The tablet coating was known to consist of titanium
dioxide (TiO2), and Ti gives a clearly identifiable peak in the
emission spectrum at a wavelength of 521 nm. Hence, the
intensity of Ti signal was chosen as an indicator of the
coating. Spectra were collected at 19 sites per tablet, with 30
shots per site. A pattern of a central spot, surrounded by
three concentric hexagons, was used to interrogate the entire

tablet surface. Figure 3 shows the spatial distribution of the
sites analyzed across the tablets, including the numbering
scheme used to identify the sites.

The Ti signal intensity is high in the initial shots, but it
drops as the laser pulses dig through the coating, indicating
that the material ablated in the lower layers contains a lesser
amount of coating material. The intensity decays slowly with
the increasing number of shots. In order to determine a
representative measure of coating thickness, a number
proportional to the point where the Ti signal decays to 50%
of its maximum was chosen. There were 19 measurements of
maximum intensity per tablet, one from each site. A half of
the average maximum intensity value for each tablet was
chosen as the indicator of the average coating thickness for
the given tablet. In a plot with the number of laser shots along
the x-axis and signal intensity on the y-axis, the number of
shots required to reach this average half-intensity was
computed using a linear interpolation technique. While the
shots are always in integral numbers, the interpolated number
could be a value between two successive shots. This number
was chosen as a representative of the coating thickness of the
given tablet.

The details of the analytical method development and
optimization can be found in (28). This study aims to build
upon those findings. In summary, there were four main
conclusions. First, the 19 locations on the tablet can be
clubbed into three position zones. The first zone contained
the central position and the six surrounding positions forming
an innermost hexagon. The second zone comprised the six
positions in the intermediate hexagon, and the third zone
consisted of the outermost six locations, again in a hexagonal
pattern (Fig. 3). Secondly, it was shown using statistical
methods that there was no significant effect of the number
of positions sampled, the frequency of data acquisition, the
number of tablets chosen (as long as there were over 20
tablets), and that the three-zone method was justifiable.

Table II. Summary of Calculations for the Data from Sample Set A

Source Symbol Fixed or random? Levels DOF Sum of squares (SS)

Position Pi F 3 2 1,486.39
Lot Lj F 6 5 16,263.42
Position–lot interaction PLij F 18 10 78.51
Tablets (within lots) Tk(j) R 238 232 4,758.70
Position–tablet interaction PTik(j) R 417 464 1,632.20
Error εm(ijk) R 4,522 3,808 12,559.12
Totals 4,521 36,778.34

Table III. Complete ANOVA of Sample Set A Evaluating the Statistical Significance of All Main Effects and Interactions

Source of variation SS df MS F Criteria p value Fcrit.

Between positions (P) 1,486.39 2 743.2 211.27 MS_P/MS_PT 5.82e−66 3.02
Between lots (L) 16,263.42 5 3,252.68 158.58 MS_L/MS_T 9.39e−73 2.25
Between tablets (nested within lots, T) 4,758.7 232 20.51 6.22 MS_T/MS_E 1.19e−140 1.16
Position–lot interaction (P×L) 78.51 10 7.85 2.23 MS_PL/MS_PT 0.015 1.85
Position–tablet interaction (P×T) 1,632.2 464 3.52 1.07 MS_PT/MS_E 0.17 1.12
Error 12,559.12 3,808 3.3
Total 36,778.34 4,521
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Hence, there are three position-related variables remaining
within a tablet. The third inference was that the dome effect
due to the curvature of the tablet can be easily modeled. The
sites away from the tablet center exhibited consistently higher
LIBS scores, but when corrected for the extra thickness that
the laser would have to dig due to an oblique impact on the
curved surface, it was found that the within-tablet variability
that was detected by the technique was not significant. Hence,
the perceived intra-tablet variability could be attributed to
the curvature of the tablet. The fourth inference was that
tablets from lots that were coated under the same conditions
did not show statistically significant lot-to-lot variability, but
they showed high tablet-to-tablet variability. This study
proceeds using the sample sets A, B, and C, with the first
two sets being used for systematic DOE while the third one
for validation.

Statistical Model

As a starting point, the coating thickness score was
expressed as:

Yi;j;k;m ¼ �þ Pi þ Lj þ PLij þ TkðjÞ þ PTikðjÞ þ "mðijkÞ ð6Þ

where Y is the measured coating thickness score, μ is the
mean coating thickness score, P is the effect of the radial
position, L is the effect of the lot (batch), PL is the position–
lot interaction, T is the effect of individual tablets nested
within lots, PT is the position–tablet interaction, and ε is the
error term, containing all other possible effects. Since the
tablets are nested within lots, no three-way PLT interaction is
possible in this model.

RESULTS: APPLICATION OF QbD PRINCIPLES
FOR PROCESS OPTIMIZATION

First Analytical Study and Method Validation

Six different lots (sample set A) were manufactured
under conditions detailed in Table I, and 40 tablets were
analyzed from each lot. The variables manipulated in the
study were the size of the pan and the load size (which are
confounded), the coating thickness, and the type of coating.
A summary of results for the entire data set is presented in
Table II. Expected mean square (EMS) expressions were
constructed using standard techniques.

The complete ANOVA for this data set is shown in
Table III. Significant position and tablet effects were
detected, confirming this source of variability. As expected,
since lots were manufactured using different conditions, a
significant effect of lots was detected; the P×L interaction
was also significant, while the P×T interaction was not.

Since the lots contained different amounts of coating, the
average LIBS scores for each lot to the amount of coating
applied to each lot was compared. Figure 4 plots the lot
average LIBS scores against the percent coating weight gain.
The mean LIBS score for each lot correlates linearly and very
closely to the amount of coating applied to each lot, providing
validation to the analytical method. The analytical method is
not only sensitive to the effects of processing conditions on

different lots but also produces scores in agreement with the
amount of coating imparted.

The target coating weight gains for each lot are shown in
Table I. An important observation from Fig. 4 was that the
correlation between LIBS scores and coating weights does
not cross the origin; rather, as shown by the equation
displayed in the figure, the intercept with the y-axis occurs
at Y=4.55 shots for 0% weight (no coating). This is a
characteristic of the LIBS-based analytical technique. To
account for this offset, the RSDs of the average LIBS score
for each lot were calculated with a subtraction of a 4.55
constant factor from the mean for each lot. The results
displayed in Fig. 5 were thus obtained, indicating a clear
decrease of the RSD with increasing weight gain.

Looking back at the ANOVA in Table III, the effect of
position can be explained as the result of the dome effect. As
shown by Dubey et al. (28) using the same tablets, instrument,
and settings, the thickness encountered by the laser beam
when striking at positions away from the center (i.e., the top
of the dome) is related to the angular positioning of the spot.
Hence, there is perceived intra-tablet coating thickness
variability. When the lot averages for each position were
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Fig. 4. Correlation between the mean LIBS score (averaged for each
lot) and the amount of coating (in weight gain percent) applied to
each lot
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Fig. 5. Tablet-to-tablet RSDs correlate very closely to the inverse of
the weight gain
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plotted as a function of the angular coordinate, excellent
correlation was obtained for each percentage coating weight
gain. Hence, most of the observed intra-tablet coating
variability can be attributed to the dome effect.

Thus, the main effect that remains to be examined is the
tablet-to-tablet component of the variance. As a first step in
this direction, process simulations using DEM (29) were
performed to study the effect of spray pattern, pan fill level,
and pan speed on the coating uniformity in the O’Hara
coating pan. In summary, the DEM results showed that the
axial uniformity of the spray pattern is the most important
phenomenon affecting the exposure of individual tablets to
the spray zone. Since axial gradients in spray can only be
mitigated by transport and mixing in the axial direction (the
slowest mixing mode), other parameters that improve axial
mixing also have an appreciable effect. The model predicted
that better uniformity should be observed for longer process
times, higher fill levels and higher rotational speeds. Com-
plete details of this DEM study can be found in (5). While
discussion of the modeling is outside the scope of this paper,
these outcomes should be kept in mind as the analysis
advances further.

Effect of Process Parameters on Tablet-to-Tablet Coating
Thickness Variability

To characterize the effect of coating process parameters
on variance components, another sample set (B) was
collected from a series of designed experiments. Ten lots
were manufactured using the conditions detailed in Table IV,
and 240 tablets were analyzed for each lot at six sampling
times (total 2,400 tablets). Samples were tested in sets of 40
taken from six time points for each lot, corresponding to

weight gains of approximately 0.27%, 0.55%, 1.1%, 2.2%,
4.4%, and 6%. Three values of the spray rate were used—S,
1.25S, and 1.5S g/min—corresponding to a low, medium, and
a high value of the variable, respectively. The exhaust
temperature was measured and grouped into three groups:
T to T+2 (low), T+3 to T+5 (medium), and T+6 to T+8°C
(high). Similarly, the pan speeds were: P, P+2, and P+4 rpm
(low, medium, high, respectively).

An overall ANOVA was conducted for the data at a
6% weight gain. Since every lot was manufactured using
a different set of manufacturing conditions, the variable
“Lot” was treated as a fixed-level variable. The results
(Table V) show that all three main effects (positions, lot,
tablets) were significant, while no interactions were
significant. The effect of position accounted for ∼15%
of the total variance and correlated directly to the
angular coordinate of the position (R2=0.88). The effect
of lots was significant and was attributed to the
differences in process parameters used to manufacture
each lot. However, lot-to-lot differences accounted for
only ∼3.5% of the total variance. Finally, the effect of
tablets within lots was also highly significant and also
accounted for ∼15% of the total variance.

Effect of Coating Weight Gain

Figure 6 shows the average LIBS score for all ten lots
combined as a function of the average weight gain for each
sampling point. The increase is linear, and an extremely high
degree of correlation is observed for the pooled data. This
result compares favorably with a previously published study
by Mowery et al. (16). However, as before, the LIBS score
shows a systematic bias; rather than intersection with the

Table IV. Experimental Conditions Examined in Sample Set B

Run no. 1 2 3 4 5 6 7 8 9 10

Spray rate (g/min) Medium Medium High High Low Low High High Low Low
Exhaust temperature (°C) Medium Medium High High Low Low Low Low High High
Pan speed (rpm) Medium Medium High Low Low High High Low Low High
Sampling points Weight gain (%)
1 0.29 0.29 0.27 0.27 0.28 0.28 0.27 0.27 0.28 0.28
2 0.58 0.59 0.53 0.53 0.55 0.55 0.53 0.53 0.55 0.55
3 1.15 1.17 1.07 1.07 1.11 1.11 1.07 1.07 1.11 1.11
4 2.30 2.35 2.13 2.13 2.22 2.22 2.13 2.13 2.22 2.22
5 4.61 4.69 4.27 4.27 4.44 4.44 4.27 4.27 4.44 4.44
6 6.00 6.00 6.00 6.00 5.99 5.99 6.00 6.00 5.99 5.99

Table V. Overall ANOVA Analysis of Sample Set B

Source of variation SS df MS F Criteria p value Fcrit.

Between positions (P) 4,001.16 2 2000.58 548.4 MS_P/MS_PT 0.00 3.0
Between lots (L) 1,425.28 9 158.36 8.87 MS_L/MS_T 0.00 1.9
Between tablets (nested within lots, T) 6,964.05 390 17.86 4.89 MS_T/MS_E 0.00 1.12
Position–lot interaction (P×L) 72.37 18 4.02 1.1 MS_PL/MS_PT 0.345 1.61
Position–tablet interaction (P×T) 2,619.35 780 3.36 0.92 MS_PT/MS_E 0.935 1.09
Error 23,347.29 6,400 3.65
Total 38,429.50 7,599
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origin, the average thickness score shows an intercept at 2.664
laser shots for a zero weight gain.

The degree of normality of the pooled tablet-averaged
scores was tested before the tablet-to-tablet variability was
analyzed. The results are shown in normal probability
coordinates in Fig. 7 for a single data set of 400 tablets from
all lots, all corresponding to a 6% weight gain. The results are
extremely close to a normal distribution (R2∼0.997),
indicating that any measure of distribution breadth based on
variance (i.e., the RSD) is an appropriate and sufficient
quantification of the entire distribution.

It has been shown in previous studies that the tablet-to-
tablet coating variability is inversely proportional to the
square root of weight gain (28) or coating time (3,6,30). In
this study, the evolution of the RSD as a function of square
root of weight gain for all lots is displayed in Fig. 8. Initially,
the RSD was obtained using the usual definition, i.e., the SD
was normalized by the mean of the set. This procedure yields
the blue diamonds in Fig. 8 showing that the RSD decreased
only slightly with increasing coating weight. This lack of
agreement with the expected behavior was entirely due to the
bias in the mean score, which artificially decreases the value
of the RSD at low weight gain values. The same data, when

normalized using the weight gain instead of SD, show a weak
correlation, as displayed by the maroon squares in Fig. 8. To
correct for background signal, which has an even higher
impact for low coating weights, a constant value of 2.664 shots
from the mean was subtracted. The corrected SD/WG shows
a good correlation with weight gain, as shown by the green
triangles in Fig. 8.

Effects of Pan Speed, Spray Rate, and Temperature

The effect of the pan speed was quantified by pooling all
the tablet-averaged LIBS scores corresponding to the same
(approximate) weight gains. The results show (Fig. 9a) that,
in general, for higher speed, lower values of the SD/WG were
observed, indicating that tablet-to-tablet variability decreased
with increasing speed. This is in agreement with previously
published studies (4,6). However, the effect of pan speed was
small compared with other effects (i.e., the effect of weight
gain) within the chosen range of speed. The effect of spray
rate (Fig. 9b) was also similarly relatively small. A general
trend was clear in the data (in agreement with expectations)
that the lower spray rate yields slightly more homogeneous
results (smaller RSDs). Again, this observation is consistent
with other published data (3). Figure 9c shows the effect of
temperature. The results indicate that over the range of
temperatures examined, the effect was small, if any.

PREDICTIVE MODELING USING DATA-DRIVEN
METHODS

Model Validation

When using data-driven statistical methods, it is always
important to validate the robustness of the models that are
based on a number of fitted parameters. Leave-one-out cross-
validation methodology is an iterative procedure during
which one observed sample is “left out” at each step and a
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Fig. 6. Average of the LIBS thickness score, averaged across ten lots
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Fig. 7. Tablet-averaged thickness scores, pooled for ten lots, show an
extremely close fit to a normal distribution
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Fig. 8. RSD of the tablet-averaged LIBS scores vs. average weight
gain. Blue diamonds display results obtained when the RSD is
normalized using the mean LIBS score averaged across all lots.
Green triangles correspond to results obtained when the RSD was
normalized by a modified mean score after the bias is subtracted from
the mean LIBS score. Maroon squares correspond to results obtained
when the RSD was normalized using the weight gain
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new model is constructed based on the reduced sampled set.
If the sampling set is inadequate for the specific region or
there are major outliers in the sampling set, then the removal
of one point should not affect the new model parameters.
This can be verified by simply using the new reduced
sampling set-based model in order to predict the left-out
sample (for which the real output is known). A commonly
used diagnostic test that can provide a quick evaluation of the
robustness and validity of a data-driven model is a plot of the
actual function value vs. the cross-validated prediction. If the
model is good, the points should show a good fit on a 45° line
(22). A quantitative measure of the goodness of fit is the
mean least squares error of the predicted left-out points vs.
their actual values with respect to the function f(x)=x. The
procedure of cross-validation is carried out for 50% of the
experimental points which are randomly taken out of the
sampling set.

Development of Predictive Models

The ability to produce input–output mappings using data-
driven approaches not only allows the construction of a
predicted output surface as a function of the input variables
but also enables the identification of optimum operating
conditions in order to satisfy a specific objective. Four param-
eters that affect the modified RSD were identified as the spray
rate (x1), pan speed (x2), temperature (x3), and weight gain (x4).

These four variables were used in the response surface
model from Eq. 1 (j=4). However, a quadratic term is only
included for variable x4 (Eq. 7) based on the current experi-
mental design. The optimized parameter values (bj and bij) are
shown in Table VI. The optimization was performed in General
Algebraic Modeling System (31), where the objective of the
optimization problem is the minimization of the least square of
the error between predicted and experimental values. Based on
the obtained quadratic response surface, a new optimization
problem was formed for minimizing the predicted RSD subject
to the input variables which were constrained within their
experimentally tested ranges. The optimal combination of input
variables was found to be:

x1
opt; x2

opt; x3
opt; x4

opt
� � ¼ Low;High;Low; 4:47½ �:

This suggests that in order to minimize the output
variability, the process should be operated at minimum spray
rate (in agreement with the analytical study), maximum pan
speed, and low temperatures where the weight gain is
relatively high. The inference that higher speed results in
lower RSD is also in agreement not only with the analytical
but also the DEM-based modeling study.

However, the input variable ranges had very different
scales. The spray rate was in terms of hundreds of grams per
minute, the temperature was varied within an 8°C window,
and the pan speed was in terms of numbers <10 rpm. Thus, all
input variables were normalized to a [0 1] range by division
with their maximum level value. The logarithmic transforma-
tion of the output was found to be the most appropriate way
to generate the data-driven response surface models. An
average error of prediction value of 7.87% was obtained
when a second-order response surface model was fitted to the
experimental data shown in Table VII. Figure 10 shows a

Fig. 9. Effect of pan speed, spray rate, and temperature on RSD of
tablet-averaged LIBS scores

Table VI. Optimized Quadratic Response Surface Parameters for
Eq. 7 Using Four Input Variables Based on the Experimental Data of
Table VII

Parameter Value

b0 5.935
b1 −0.220
b2 −0.321
b3 −1.170
b4 −1.231
b12 0.216
b13 0.679
b14 −0.065
b23 −0.294
b24 0.051
b34 0.288
b44 0.109
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Table VII. Experimental Data (60 Data Points) Used for the Development of the Data-Driven Method

Spray rate Pan speed Exhaust temperature WG RSD/WG

Medium Medium Medium 0.276 141.2201
Medium Medium Medium 0.551 57.391
Medium Medium Medium 1.103 42.49853
Medium Medium Medium 2.206 32.14512
Medium Medium Medium 4.412 16.77561
Medium Medium Medium 5.998 12.09731
Medium Medium Medium 0.276 137.8366
Medium Medium Medium 0.551 64.00527
Medium Medium Medium 1.103 30.74885
Medium Medium Medium 2.206 24.52377
Medium Medium Medium 4.412 17.97682
Medium Medium Medium 5.998 18.0915
High High High 0.276 180.9221
High High High 0.551 65.5858
High High High 1.103 26.26155
High High High 2.206 24.42879
High High High 4.412 21.83489
High High High 5.998 18.50271
High Low High 0.276 195.5087
High Low High 0.551 92.76363
High Low High 1.103 35.19413
High Low High 2.206 28.27531
High Low High 4.412 18.91655
High Low High 5.998 20.08049
Low Low Low 0.276 165.6004
Low Low Low 0.551 66.24541
Low Low Low 1.103 32.55265
Low Low Low 2.206 25.27056
Low Low Low 4.412 18.25478
Low Low Low 5.998 17.76121
Low High Low 0.276 141.8786
Low High Low 0.551 58.99649
Low High Low 1.103 25.57197
Low High Low 2.206 24.91249
Low High Low 4.412 18.05353
Low High Low 5.998 12.18082
High High Low 0.276 175.1925
High High Low 0.551 74.8951
High High Low 1.103 30.97355
High High Low 2.206 22.7638
High High Low 4.412 26.18948
High High Low 5.998 13.32663
High Low Low 0.276 213.3678
High Low Low 0.551 95.66086
High Low Low 1.103 35.96868
High Low Low 2.206 24.99163
High Low Low 4.412 22.07419
High Low Low 5.998 16.80901
Low Low High 0.276 150.5171
Low Low High 0.551 60.74419
Low Low High 1.103 35.69729
Low Low High 2.206 24.72072
Low Low High 4.412 20.455
Low Low High 5.998 15.85795
Low High High 0.276 113.6789
Low High High 0.551 45.54255
Low High High 1.103 23.5984
Low High High 2.206 24.07998
Low High High 4.412 20.41084
Low High High 5.998 14.75096
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comparison between the actual and the predicted RSD. The
quadratic response surface equation had the following form:

ln RSD
WG

� � ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b12x1x2
þ b13x1x3 þ b14x1x4 þ b23x2x3 þ b24x2x4
þ b34x3x4þb44x24

ð7Þ

In order to test the robustness of the model, leave-one-
out cross-validation for a randomly selected portion of the
data set was performed. The procedure involved the deletion
of one observation at each iteration and the calculation of the
model parameters based on the reduced data set. The left-out
point was predicted based on the reduced data set model and
its real value was compared with the predicted one, resulting
in an error value. The overall average error of leave-one-out
cross-validation was calculated as the mean squared error of
all cross-validation iterations and was equal to 13.44%. In
addition, the optimization problem was solved at every
iteration based on the model obtained by the reduced data
set in order to verify that the optimal operating conditions
were not affected by the left-out observations (Fig. 10). Based
on the value of the mean squared cross-validation error and
taking into account the inherent noise present in the data, it
was concluded that there were no major outliers in the data
since the model parameters were not significantly affected
when observations were randomly removed. This can also be
verified by Fig. 10, where it is shown that the optimal
conditions do not change significantly in any of the produced
models. In fact, the only variable that was shown to be more
sensitive was the pan speed, but in all cases, the models
predict optimal performance at high values of this variable.

Next, an analogous model was built using kriging
methodology. Due to the interpolating nature of kriging
algorithm, different steps need to be taken for developing a

kriging-based model for the modified RSD as well as for the
optimization and validation of the model. Since kriging uses
the actual experimental values for observed combinations of
input variables, the only way of validating the model is by
choosing a subset of the data as the training set and leaving
the remaining observations as the test set. In order to
eliminate any biased results, this procedure was performed
several times for different randomly selected training sets. In
each run, the training set comprised 40 points while the
remaining 20 (Table VII) were used for calculating the average
error of prediction of the model. This procedure eliminates the
need for cross-validation of the model since the produced
models are based on different data sets in every run.

After 50 random simulations, the average kriging error
of prediction for the 20 test points did not exceed the
maximum value of 6.53% (Fig. 11). The predicted modified
RSD is plotted against the actual values of the experimental

Fig. 10. Predicted optimal operating conditions for each iteration of the leave-one-out cross-
validation procedure based on the RSM model

Fig. 11. Average error (%) of kriging models based on 40 random
training samples in each of the 50 iterations
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data for the identified worst case (average kriging error=6.53%)
in Fig. 12. The advantage of using the kriging method for
providing error estimates for each calculated prediction becomes
obvious here as the majority of the experimental values are
found to fall within the interval of the kriging uncertainty.

Optimization based on kriging modeling is also very
different from themethodology followed forRSM-basedmodels.
In this case, a closed-form expression of the output with respect
to the input variables is not available, and hence, gradient-based
optimization techniques cannot be applied. Optimization based

on interpolating black box methods is based on direct search
methods where the algorithm uses its feature of providing kriging
variance in order to identify regions of high uncertainty which
have not been sufficiently sampled. Once the algorithm con-
verges, the optimal values of the covariance function parameters
are used to calculate the predicted output over a fine grid of the
input variable space. Finally, the minimum observed output is
identified as the optimal. The optimal operating conditions
identified by this procedure were the following:

x1
opt; x2

opt; x3
opt; x4

opt� � ¼ Low;Medium;Low; 4:49½ �:

Except for the pan speed which was predicted to have a
lower optimal value, the kriging-optimized variables agree
with the ones identified by the RSM.

Prediction of the Design Space

The concept of design space was formally introduced in
2005 (32,33) by the International Society of Pharmaceutical
Engineering as one of the building blocks of the Product
Quality Lifecycle Implementation initiative. In simple terms,
it is the area of the parametric space within which an
acceptable product can be produced. The identification and
graphical representation of process design space is critical for
locating not only the feasible but also the optimum operating
variable ranges and design configurations. In Boukouvala et al.
(34), the mapping of the design space of pharmaceutical
processes was achieved using the ideas of process operability

Fig. 13. Design space of coating process predicted by RSM model for ln RSD
WG

� �
< 2:65

Fig. 12. Predicted vs. real model output ln RSD
WG

� �
using kriging model
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and flexibility under uncertainty. Optimal process design under
uncertainty was defined as a rigorous formulation in the 1980s
(35), where the effects of parameters that contain considerable
uncertainty on the optimality and feasibility of a chemical plant
were studied. The objective of solving such problems was to
ensure optimality and feasibility of operation for a given range
of uncertain parameter values by identifying a measure of the
size of the feasible region of operation.

For the current study, the RSM and kriging can be used
to identify the maximum deviations of the input variables that
result in acceptable process variability. For example, if a
maximum value of ln(RSD/WG)max=2.65 is considered to be
the upper bound of acceptable variability, Figs. 13 and 14
illustrate the predicted acceptable regions of input variables
that will result in equal to or lower than this bound.

With this analysis, it can be concluded that low weight
gains lead to an increase in the output variability of the
process since feasible operation is achieved for a small subset
of the entire range of this variable. In addition, this analysis
shows that regions where pan speed is very low while the
spray rate is at its maximum value should be avoided.

VALIDATION AND EVALUATION
OF THE QbD-BASED STUDY

Analysis of Validation Batches

Three batches, corresponding to potencies of p1, p2, and
p3 (milligrams of active ingredient) were analyzed (sample

Fig. 14. Design space of coating process predicted by kriging model for ln RSD
WG

� �
< 2:65

Table VIII. Summary of Calculations for the Validation Data Set

Source Symbol Fixed or random? Levels DOF Sum of squares (SS)

Position Pi F 3 2 732.62
Lot Lj F 3 2 290.79
Position–lot interaction PLij F 9 4 70.83
Tablets (within lots) Tk(j) R 120 117 1,838.98
Position–tablet interaction PTik(j) R 360 234 746.88
Error εm(ijk) R 2,280 1,920 6,056.58
Totals 2,279 9,736.69
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set C). Each lot was manufactured under standard conditions
and then coated using the modified coating process with the
optimal process parameters determined in this study. A
summary of results for the entire data set is presented in
Table VIII. EMS expressions were constructed using standard
techniques and used subsequently to compute variance
components.

The complete ANOVA for this data set is shown in
Table IX. As in previous studies, all three main effects
(positions, tablets, lots) were found to be statistically signif-
icant. Error accounted for approximately 70% of total
observed variance. The effect of tablets (within lots) was by
far the largest systematic effect, accounting for about 15% of
the total observed variance. The effect of position (within
tablets) was also quite large and accounted for about 11% of
the total observed variability. As expected, since different
coatings are applied to each lot, a statistically significant effect
of the lots was also detected, although the contribution of the
lots was a bit below 4% of the total observed variance (and
essentially identical to that observed for the designed experi-
ments using placebo tablets of sample set B). The P×L
interaction was also statistically significant, although it
contributed only about 1% of the total observed variance.

Among the two large systematic main effects, tablets
(within lots), and positions (within tablets), the latter can
again be explained by examining the effect of the curvature of
the tablet dome. Once again, when the lot averages for each
position were plotted in terms of the geometric correction
factor, excellent correlation was obtained for each coating
thickness, demonstrating that the effect of position within

tablets is caused by the increased thickness that the laser
beam must cross when it intersects the coating at an angle due
to the curvature of the tablet dome.

The degree of normality of the deviations with
respect to the lot mean were tested in a similar fashion
as it was done for sample set B. It was found that the
results were extremely close to a normal distribution (with
a R2∼0.98), indicating that any measure of distribution
breadth based on variance (e.g., the RSD) is an
appropriate quantification of the breadth of the entire
distribution of tablet-averaged scores for each lot.

Comparison of Validation and the Pre-validation Batches

In order to assess the effectiveness of this process
improvement exercise, the RSD and the SD/WG index for
each lot from the pre-validation sample set B and the
validation set C were computed (Table X). Both RSD and
SD/WG results were found to lie within the range observed in
the designed placebo experiments, demonstrating the robust-
ness of the new coating process. Moreover, for all three lots
containing API, the results for both indices average lower
than the mean of each index for the placebo lots, indicating
that efforts to optimize the process were successful and that
the new coating process was optimized (within the limitations
of statistical methods). In order to provide an appropriate
context for the degree of variability reduction achieved by the
optimization of the process, the RSD of LIBS scores was
compared for all data sets collected in the study.

Table IX. Complete ANOVA of Validation Data Set Evaluating the Statistical Significance of All Main Effects and Interactions

Source of variation SS df MS F Criteria p value Fcrit.

Between positions (P) 732.62 2 366.31 114.76 MS_P/MS_PT 1.85E−35 3.03
Between lots (L) 290.79 2 145.4 9.25 MS_L/MS_T 1.86E−04 3.07
Between tablets (nested within lots, T) 1,839.00 117 15.72 4.98 MS_T/MS_E 7.89E−53 1.23
Position–lot interaction (P×L) 70.84 4 17.71 5.55 MS_PL/MS_PT 2.77E−04 2.41
Position–tablet interaction (P×T) 746.88 234 3.19 1.01 MS_PT/MS_E 0.44 1.17
Error 6,056.58 1,920 3.15
Total 9,736.69 2,279

Table X. Summary of Tablet-to-tablet Variability Results

Lot RSD SD/WG

B1 0.068 13.197
B3 0.103 19.736
B3 0.102 20.185
B4 0.117 21.906
B5 0.102 19.376
B6 0.067 13.288
B7 0.073 14.538
B8 0.103 18.337
B9 0.083 17.300
B10 0.080 16.092
C1 0.093 19.012
C2 0.075 14.233
C3 0.083 16.012

Lots B1–B10 belong to sample set B and lots C1–C3 to sample set C
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Fig. 15. Normalized variance averaged over all lots in each sample
set used in this study. The variability was reduced to less than a half of
its original value as a result of the development of optimized process
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Evolution of Tablet-to-Tablet RSD over the Whole Study

As the QbD-based study was carried out, the coating
variability was systematically decreased. The highest variabil-
ity (largest LIBS RSD) was observed during the initial trials.
Information from the sample set M1 from a previous study
(28) can also be included for comparison. During these trials,
the coating process was characterized, and an initial DOE
was conducted to examine the effect of coating parameters. A
significantly lower variability was observed for sample set A
which examined the effect of using different coating thick-
nesses and/or different types of coatings. Variability was
decreased further during the main DOE conducted as part
of the project (sample set B). When these experiments were
conducted, the lessons learned during the previous sets of
experiments were used to select the coating material and the
sets of conditions to be examined, and the design space was
marked. These also provided inputs for the data-driven
methods that were subsequently used to optimize the process.
Finally, the confirmation lots (sample set C) were, as
expected, close to the lower end of the range of values
observed during the main DOE of sample set B.

The significance of the progressive reduction in
variability achieved during the sequence of experiments
conducted in this study is further highlighted in Fig. 15,
which shows the evolution of the normalized variance
(RSD^2), averaged for all lots in each set. The initial
sample set M1, which was from production lots from the
old process, showed the highest variance. The variance
was subsequently reduced for sample sets A, B, and C.
Ultimately, it was decreased by more than half.

CONCLUSION

These results reported here demonstrate that the new
coating process optimized by this QbD study was robust and
produced consistent results. The new set of results obtained
for the three lots of commercial product confirms all of the
main observations previously reported:

(a) The main source of avoidable variability in the coating
process was tablet-to-tablet (within lot) variability which,
as previously demonstrated, was caused by mixing
limitations of the coating pan.

(b) Variability due to position (within tablets) was simply an
artifact of the curvature of the tablet dome.

(c) A small variability component due to the lot-to-lot
differences was also detected, but accounted only for a
few percent of the total variability.

Moreover, the process conditions selected in the previous
studies (using sample sets A and B) were used successfully to
manufacture commercial products having a coating variability
that was consistent (slightly lower) with the average of the
placebo lots, thus confirming that the conditions selected as
the result of the DOE study indeed minimize coating
variability (within the constraints of the approved manufac-
turing process). Overall comparison showed that the variance
was reduced by more than half by optimizing coating
composition, coating thickness, and the parameters of the
coating process.
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